
ARx_Intro.ag

ARx_Intro.ag ii

COLLABORATORS

TITLE :

ARx_Intro.ag

ACTION NAME DATE SIGNATURE

WRITTEN BY April 17, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ARx_Intro.ag iii

Contents

1 ARx_Intro.ag 1

1.1 ARexxGuide | Introduction . 1

1.2 ARexxGuide | Preface (1 of 5) | ACKNOWLEDGEMENTS . 2

1.3 ARexxGuide | Preface (1 of 5) | REFERENCES (1 of 1) . 2

1.4 ARexxGuide | Preface (1 of 5) | Author . 3

1.5 ARexxGuide | Preface (1 of 5) | Distribution restrictions . 4

1.6 ARexxGuide | Preface (1 of 5) | Compatibility with the REXX standard . 4

1.7 ARexxGuide | Introduction (1 of 5) | THE FIRST PROGRAM . 6

1.8 ARexxGuide | Introduction (2 of 5) | WHY AREXX? . 6

1.9 ARexxGuide | Introduction (3 of 5) | GETTING STARTED . 8

1.10 ARexxGuide | Introduction (4 of 5) | WHERE TO WRITE PROGRAMS . 8

1.11 ARexxGuide | Introduction (5 of 5) | RUNNING YOUR PROGRAMS . 9

1.12 ARexxGuide | Introduction (6 of 5) | WHAT TO WRITE . 10

1.13 ARexxGuide | Foreword | About this guide (1 of 2) | REQUESTER VERSION 11

1.14 ARexxGuide | Foreword | About this guide (2 of 2) | NAVIGATION . 12

ARx_Intro.ag 1 / 13

Chapter 1

ARx_Intro.ag

1.1 ARexxGuide | Introduction

AN AMIGAGUIDE® TO ARexx Second edition (v2.0)
by Robin Evans

Preface

Acknowledgements

References

About the author

Distribution

Compatibility
Intro to ARexx

Hello World!

Why ARexx?

Getting it started

Writing programs

Running a script
About this guide

Requester version

Navigating hints
Copyright © 1993,1994 Robin Evans.

This guide is shareware . If you find it useful, please register.

ARx_Intro.ag 2 / 13

1.2 ARexxGuide | Preface (1 of 5) | ACKNOWLEDGEMENTS

Acknowledgements
~~~~~~~~~~~~~~~~
A special thank-you to those who sent in registration fees for the first
edition, especially Dean Adams who not only registered, but sent extensive
and helpful errata reports after doing so, and who provided invaluable
guidance for and testing of the utility programs for this edition.

I thank the many people who have written ARexx scripts over the years and
released them publicly so that all of us could study and learn, to the
folks on GEnie for asking challenging questions about ARexx and providing
insightful answers, to Richard Stockton and Gramma’s BBS (206-744-1254) --
not only one of the best sources of information on ARexx, but also one of
the most incredible applications of the language -- and to those who
provide fascinating discussions on Usenet’s comp.lang.rexx of the many
flavors of REXX. Thanks to Eddie Churchill of Inovatronics for pointing
out that the guide already had over a dozen tutorial examples that weren’t
listed in the ‘Tutorial’ section. They are now listed in the expanded
Techniques section.

The development of the first edition was aided greatly by Ed Patterson who
had the patience to look through rough and early versions and provided
invaluable suggestions. Thanks to Larry Shanahan for extensive
link-testing and for raising several Multiview-compatibility issues.

Trademarks:

Amiga, AmigaGuide, AmigaDOS, AmigaOS, Amiga Workbench, and Intuition
are trademarks of Commodore-Amiga, Inc.

ARexx and WShell are a trademarks of Wishful Thinking, Inc.

GEnie is a trademark of General Electric Information Services, Inc.

TurboText is a trademark of Oxxi, Inc.

Edge is a trademark of Inovatronics, Inc.

reqtools.library , which is used with some versions of this guide, is
copyrighted by Nico François. rexxreqtools.library is copyrighted by
Rafael D’Halleweyn.

Next: REFERENCES | Prev: Introduction | Contents: Introduction

1.3 ARexxGuide | Preface (1 of 5) | REFERENCES (1 of 1)

References
~~~~~~~~~~
The following works were used as references in preparing this guide.

ARexx User’s Reference Manual, The REXX Language for the Amiga
by William S. Hawes
Wishful Thinking Development, 1987 (with disk-based updates)

ARx_Intro.ag 3 / 13

The REXX Language, A Practical Approach to Programming
by M.F. Cowlishaw
TRL1:

Prentice-Hall, First edition: 1985
ISBN 0-13-780735-X Prentice-Hall

TRL2:
Prentice-Hall, Second edition: 1990
ISBN 0-13-780651-5

Using ARexx on the Amiga
by Chris Zamara & Nick Sullivan

Abacus, 1992
ISBN 1-55755-114-6

The REXX Handbook
edited by Gabriel Goldberg & Philip H. Smith III

McGraw-Hill, 1992
ISBN 0-07-023682-8

Extending ARexx (and other articles)
by Marvin Weinstein

AmigaWorld Tech Journal, 1991-1992

Next: AUTHOR | Prev: ACKNOWLEDGEMENTS | Contents: Introduction

1.4 ARexxGuide | Preface (1 of 5) | Author

The author
~~~~~~~~~~

No, the only perfect solution would have been the sixteen
pockets, symmetrically disposed, each one with its stone. Then
I would have needed neither to number nor to think, but
merely, as I sucked a given stone, to move on the fifteen
others, each to the next pocket, a delicate business
admittedly, but within my power, and to call always on the
same pocket when I felt like a suck.

--- Samuel Beckett, Molloy

Mr. (as in Robin Hood, in case you were wondering) Evans has, in his
checkered past, sprayed asbestos onto the ceilings of mobile homes and
designed databases for lawyers (two activities that seem somehow related).
Between those periods, he edited a biweekly community newspaper in Seattle
and typeset enough headlines and stories on a CompuGraphic EditWriter 7500
to realize that computers could be nifty things after all.

He was a serious enough philosophy major in college (a time when he
thought that computers just might be evil) that he can still give a
passable definition of "epistemology" or "ontology" (although he can’t
always spell the words correctly.)

He moved up from a C-64 to his first Amiga (a 500) in 1988 and bought
ARexx shortly thereafter. When he discovered what could be done with ARexx
by itself and ARexx with TxEd, he was hooked.



ARx_Intro.ag 4 / 13

Evans writes occasional articles on ARexx for ViewPort, GEnie’s monthly
online Amiga magazine and teaches a class in REXX/ARexx at CALC, the
online college available on GEnie. (Write to either of the addresses
listed in the

Distribution
node for more information on the class.)

Next: Distribution | Prev: REFERENCES | Contents: Introduction

1.5 ARexxGuide | Preface (1 of 5) | Distribution restrictions

Distribution
~~~~~~~~~~~~
The files in this archive are copyright © 1993,1994 by Robin Evans and may
be distributed only in the original form and only under the conditions
outlined below.

Distribution of the material in this archive is prohibited if the contents
of the original archive are altered in any way.

The archive may be distributed in its original form on local and national
computer networks, on Aminet distribution channels (including the Walnut
Creek CD-ROM), on Fish collections, or on disk collections distributed by
non-profit entities. Distribution by other means (including distribution
by profit-making entities other than those mentioned) is prohibited unless
specific permission is granted.

Rights are reserved for other forms of distribution of this archive or of
its contents individually, including but not limited to distribution of a
printed version of any file contained in the archive, distribution with
commercial products, or distribution on computer networks in hypertext
form of any file in the archive. Contact the author for further
information and permissions.

Robin Evans 14 Mar 1994

from Internet:
robin@halcyon.com
r.evans6@genie.geis.com

on GEnie:
R.EVANS6

by phone:
(206) 682-7077

Next: COMPATIBILITY | Prev: Author | Contents: Introduction

1.6 ARexxGuide | Preface (1 of 5) | Compatibility with the REXX standard

ARx_Intro.ag 5 / 13

ARexx variations from the REXX standard
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
REXX is a language used on many platforms. The current version of ARexx
(1.15) distributed with the operating system was developed in the late
80’s but differs in some fundamental ways from the definition of the REXX
language that was available at that time. It differs even more from the
current standard.

The variations will be of little more that academic interest to those who
use ARexx only, but will be of more concern to those who wish to develop
scripts that can be used on the Amiga and on other systems, those who wish
to use a script written for another system on the Amiga, or those who just
like standards (but then, those folks aren’t likely to use Amiga).

Many of the differences between ARexx and the REXX standard are mentioned
throughout this guide. Notations on compatibility issues are extensive,
but not comprehensive.

What is the REXX standard?
~~~~~~~~~~~~~~~~~~~~~~~~~~
The REXX language was developed by an IBM engineer named Mike Cowlishaw in
the early 80’s on mainframes using the CMS operating environment. It
gained quick acceptance in that environment and is still widely used
there. IBM soon made the language part of its System Application
Architecture (SAA), offering versions of the language to users of other
IBM operating systems.

Mr. Cowlishaw described the purpose, syntax, and requirements of the
language in a well-written book first published in 1985 -- The REXX
Programming Language, A Practical Approach to Programming. That book
(called TRL1 by the REXX cognoscenti) defined the first ‘standard’ for the
language. A second edition of the book (called TRL2), was published in
1990. That edition has become the current standard for the language, but
will soon be displaced by a formal definition from an ANSI standards
committee.

The X3J18 REXX Standards Committee is working on a formal standard for the
REXX language, using TRL2 as its base document. The Committee meets 3 or
4 times a year and holds ongoing discussions throughout the year by
electronic mail.

The purpose of a standard
~~~~~~~~~~~~~~~~~~~~~~~~~
REXX is available in versions developed by IBM for virtually all IBM
operating systems, including OS/2. It has also been developed by
independent implementers for a wide range of other systems including
MS-DOS, Windows, Unix, and -- of course -- the Amiga.

The reason for a standard definition of a programming language is to limit
the differences that are encountered when using the language on different
systems; to define a basic set of programming constructs that can be used
on any of the systems. Each system would still offer extensions to the
language to fit the current environment, but the basic syntax and
fundamental constructs would be the same.

Next: INTRODUCTION | Prev: Distribution | Contents: Introduction



ARx_Intro.ag 6 / 13

1.7 ARexxGuide | Introduction (1 of 5) | THE FIRST PROGRAM

It has become a mantra -- two simple words that have been repeated so
often in so many programming languages that they seem to have become an
incantation. It is the First Program, the Foundation.

Let us not delay. Here it is:

/**/
SAY ’Hello, world.’

That is an ARexx program, total and complete. The first line (a comment )
is vital, but doesn’t do anything. The second line, though -- that will
cause ARexx to output to the current shell the words of the mantra.

In the jargon of ARexx, the second line is an instruction ; SAY is a
keyword ; the quoted words form a string . The jargon is useful and the

reader who has been pressing buttons has discovered that it is both used
extensively and explained at length elsewhere in this guide, but the
jargon used to define the language is not the heart of ARexx. The program
is. That mantra -- or, rather, the means used to produce the mantra -- is
the heart of the language.

Let us repeat it for good luck:

/**/
DO 5

SAY ’Hello, world.’
END

There we have a control structure that produces an iterative loop .
What is important, though, is what it does: it repeats 5 times an
instruction that is written out only once. ARexx offers a wealth of such
control structures.

This guide seeks to explain the elements of the language, not because the
jargon used to describe such things has any importance in its own right,
but because through understanding how the language works the programmer
will be better able to use the language to do just what she wants.

Next: WHY AREXX | Prev: Introduction | Contents: Introduction

1.8 ARexxGuide | Introduction (2 of 5) | WHY AREXX?

Why spend time learning a programming language like ARexx? For one thing,
it’s easy. REXX -- the language from which ARexx was born -- was designed
to be easily accessible to non-programmers while still providing the power
and structure expected by the seasoned programmer.

ARexx on the Amiga can make the machine more powerful and more
personalized, not just through its own resources as a programming
language, but also by controlling other programs with ARexx scripts.

Most commercial productivity programs for the Amiga use ARexx to add



ARx_Intro.ag 7 / 13

features to the program. The heavyweight image-processing tools make
extensive use of ARexx as do the two major desktop publishing programs.
Most word processors available use ARexx as their macro language.

ARexx does more than just replace the often-bizarre syntax of macro
languages. It also allows different programs to communicate with one
another. For instance, a bitmap picture in Professional Page can be sent
to ADPro for manipulation and reinserted in Pro Page by simply choosing
the name of an ARexx script in PPage. The PPage script then sends the
necessary commands to ADPro to load the image, and could even be made to
begin an automatic processing operation in ADPro. (Similar tasks could be
performed with ImageMaster or ImageFX as well as with version 3.0 of
Pagestream.)

ARexx itself doesn’t know anything about anim files or iff files since the
language was developed over a decade ago on an IBM mainframe that didn’t
have such wonderful things. It can, nonetheless, be used to control the
creation of an animation in a program like AdPro that does know about iff
and anims.

Many PD and shareware programs provide ARexx support as well. One of many
fascinating programs available from your favorite network or BBS is SQLdb
by Kyle Saunders. It is a shareware database engine using the industry-
standard SQL language. It can be used without ARexx, but becomes part of a
powerful database management system when used as a SQL server with ARexx.

Modems or other peripherals attached to the serial port can be controlled
through ARexx with the help of functions provided by rexxserdev.library.

Another example is EdPlayer, a MED/MOD player. It also works fine without
ARexx, but becomes more powerful when combined with ARexx. A list of chosen
mods can be saved for later playback, but only through ARexx. An ARexx
script available in some electronic file libraries will randomly choose mod
files in a specified directory and play them using EdPlayer.

From the time ARexx was introduced, text editors have led the way as
innovative ARexx implementations. With the help of ARexx and a terminal
program that also communicates via the language, a text editor like
TurboText, Edge, CED, or a handful of others can become a complete text
engine, serving as a customized front-end for any communications service.

ARexx Applications list
~~~~~~~~~~~~~~~~~~~~~~~
A comprehensive list of programs that support ARexx commands, of add-on
function libraries, and of other ARexx utilities is maintained by
Daniel Barrett of the University of Massachusetts, Amherst. In February,
1994 the ARexx Applications List included over 370 products.

Look for the list on your favorite computer bulletin board. Those with
direct access to Internet services can get a copy of the list by anonymous
ftp from any Aminet site (such as wuarchive.wustl.edu) in the directory
/pub/aminet/util/rexx. The name of the file (always the most recent
version) is ‘ARexxAppList.lzh’.

Those with mail-only access to Internet may get a copy through ftp-mail.
To find out how to do that, send email to ‘ftpmail@decwrl.dec.com’
containing only the word ‘HELP’ in the message body.

ARx_Intro.ag 8 / 13

A recent copy of the list is usually available in the Usenet newsgroup
comp.sys.amiga.applications.

Next: GETTING STARTED | Prev: Hello world | Contents: Introduction

1.9 ARexxGuide | Introduction (3 of 5) | GETTING STARTED

By themselves, ARexx scripts are merely collections of text that are
meaningless to the Amiga. Some computer languages sift through the text
written by the programmer (called ‘source code’) and translate it into a
form understandable by the computer just once. The source code is
‘compiled’ once by a program that reads the text and outputs an executable
program. (A compiler is available for ARexx, but is not covered in this
guide.)

ARexx, on the other hand, translates a script’s source code each time it
is executed. The script is interpreted by another program, one that
understands the meaning of ARexx tokens , expressions , and clauses
and is able to translate them into the computer language understood by the
Amiga.

The interpreter program is RexxMast . It is located in the sys:System
drawer on standard Workbench disks (for versions 2.0+ of the OS). The
interpreter must be running before ARexx scripts can be run.

STORING AREXX FILES: ARexx looks for files specified by the RX
command in a directory called ‘REXX:’. Each user

should decide where on the system ARexx files will be stored and then add
to the user-startup the following line:

assign REXX: <script location>

In its manuals, Commodore recommends assigning REXX: to the S: directory,
which is where standard DOS scripts are located. Unfortunately, that could
become confusing to those who use ARexx frequently. The REXX: directory can
easily be filled with dozens of files. Many application programs (this
guide among them) now include large collections of scripts (sometimes with
unique file extensions) to be added to the REXX: directory. That can
quickly become overwhelming if they are mixed up with the files in S:.

It strikes this writer as more useful to devote a new directory to REXX:
and leave S: for DOS scripts. The following might, therefore, be a useful
assign statement:

assign REXX: sys:rexx

Next: WRITING | Prev: Why ARexx | Contents: Introduction

1.10 ARexxGuide | Introduction (4 of 5) | WHERE TO WRITE PROGRAMS

ARx_Intro.ag 9 / 13

ARexx does not supply an ‘environment’ in which scripts must be written.
Any text editor will do. The script must begin with a comment , and must
follow the basic rules that are the subject of this guide. That’s it.

You don’t need to learn how to work the menus and requesters in a new
program, since ARexx itself has none of those. Just start your trusted
editor and type. It is even possible to use a word processor to write
scripts, but care must be taken in such an environment. First of all, the
script will have to be saved as ASCII text since most word processors add
formatting codes to documents -- codes that would be confusing to ARexx.

Another danger of word processors is their treatment of text lines. Text
editors usually allow a line to be as long as necessary -- extending past
the edge of the window if necessary. Word-processors, in contrast, wrap
lines to fit within a defined column width. The problem in ARexx
programming is that a line is significant. A long line of code can be
divided into several lines in ARexx, but each line must end with a special
code (the comma continuation character) to indicate that condition.

Once the script is written, it can be saved under nearly any name. The
standard convention, though, is to save ARexx scripts that are meant to be
executed from the shell with a filename extension of ‘.rexx’. ARexx will
run such a script using the RX command even if its name is entered
without the extension.

ARexx scripts meant to be called as macros from an application program are
usually given unique extensions determined by the developer of the
application.

Next: RUNNING PROGRAMS | Prev: Startup | Contents: Introduction

1.11 ARexxGuide | Introduction (5 of 5) | RUNNING YOUR PROGRAMS

The ARexx distribution -- both the commercial version and that included
with the operating system -- includes a utility program called RX that
has one task in life: to launch ARexx scripts from the Amiga shell or from
an icon in much the way that the EXECUTE command launches DOS scripts.

One of the example scripts included in the ARexxGuide archive is called
‘ARx_Cmpr.rexx’ To run that script, the following command can be typed in
the shell:

RX ARx_Cmpr

If the script is located either in the rexx: directory or in the current
directory, ARexx will find it there, even if rexx: is not included in the
system’s command search path. Because the file extension ‘.rexx’ is the
default extension for scripts launched from the shell, it need not be
included.

For frequently-used ARexx scripts, an entry in the alias list of the
User-Startup file can be helpful. If the script is saved as
‘rexx:DoAlottaStuff.rexx’, then the following will make it more easily
accessible from the shell:

ARx_Intro.ag 10 / 13

alias DoStuff "rx DoAlottaStuff []"

Once the alias is entered in the startup file, the shorter name can be
used to launch the script.

Another, somewhat more complex way to start an ARexx script, is to treat
it like a DOS script file. The DOS PROTECT command can be used to set what
is called the ‘script bit’ for a file. When that bit is set, AmigaDOS
recognizes the file as something that can be executed. If the file begins
with an ARexx comment line, then AmigaDOS will launch it as an ARexx
script.

This is the command to set the ‘script bit’:

PROTECT rexx:ARx_Cmpr.rexx +s

Once that bit is set, the rexx: directory must be added to the command
search path with a line similar to the following (which should, ideally,
be included in the file ‘s:user-startup’):

PATH rexx: add

With those two tasks accomplished, the script ‘arx_cmpr.rexx’ can be
started by entering is full name (including the extension, unfortunately)
on the shell.

The need to include the extension along with the file name means that this
method doesn’t save typing over using the RX command. A quick fix that
works for some files is to store them in the rexx: directory with the
script bit set but without an extension. That won’t work in all cases,
however. The ARx_Cmpr file is one of those cases. It is called as an
external function by its full name (with extension) from within this guide,
so the extension is significant. (The default ARexx extension for scripts
called from AmigaGuide® is ‘.guide’. Since that seems confusing, the
extension is not used here.)

Next: WHAT TO WRITE | Prev: WRITING | Contents: Introduction

1.12 ARexxGuide | Introduction (6 of 5) | WHAT TO WRITE

It is beyond the scope of this guide to tell the user what to write. Once
one has learned how to write scripts in ARexx, the ‘what?’ question will
answer itself. Most people who have mastered ARexx find that there are too
many ideas about what to write and not enough time to write.

The information presented in this guide is meant to help users master the
intricacies of ARexx, but it may be overwhelming to a new user. One
approach that might be helpful is to look first at the Tutorial section
and the Techniques section. The scripts and sample code presented there
show instructions, assignments, functions, and commands used in context.

It is also useful to study ARexx scripts written by others. The ARexxGuide
help system supplied with the archive serves as an interface between a

script and the information in ARexxGuide. Many scripts are available on

ARx_Intro.ag 11 / 13

networks and public-domain disks and macro scripts are included with many
programs. Open one of the scripts in Ed 2.0 or another editor using the
help system, and press the help-system key defined for the editor. If the
word or character under the cursor has significance to ARexx, the
ARexxGuide node explaining it will be presented. Additional information
about a clause can be retrieved using the help system’s optional
clause information window .

Next: Introduction | Prev: RUNNING PROGRAMS | Contents: Introduction

1.13 ARexxGuide | Foreword | About this guide (1 of 2) | REQUESTER VERSION

The two versions: Requesters and standard
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Two versions of ARexxGuide are distributed. The same information is
included in the two versions, but it is presented in different ways. The
version with ‘RQ’ in the archive name uses requesters to replace many of
the links in the standard version. Instead of jumping to the glossary
node for definitions of terms like STDERR , the RQ version will present a
small requester with the same information. The requester includes buttons
that can be pressed to move to a new ARexxGuide node for more information.

The requesters in the RQ versions are implemented with reqtools.library
by Nico François which is a copyrighted, but freely-distributable program
available on most networks and BBSes that support the Amiga. The ARexx
interface to ReqTools, called rexxreqtools.library, was created by Rafael
D’Halleweyn and is included in the ReqTools distribution archives. It is
copyrighted by Mr. D’Halleweyn.

Both libraries are required for those using the RQ version of ARexxGuide.
Because the current versions of Multiview do not open an ARexx port, the
RQ version of the guide will work properly only with version 34 of the
AmigaGuide® utility. The requesters will be displayed in version 39 (the
Multiview version), but the buttons will not work properly.

The requesters in ARexxGuide-RQ were tested with release 2.2a of ReqTools
which is library version 38.1210 of reqtools.library and version 37.71 of
rexxreqtools.library. That release is recommended. Look for an archive
named ‘ReqTools22a_User.lha’ in your favorite shareware source. Those with
access to the Internet can find the archive in the ‘util/libs’ directory
of Aminet. A minimum version number of 37.50 is required for rexxreqtools.

Hyperlinks that call a requester in the RQ version are identified with
marks on either side of the link word. (Those using non-standard fonts
with the Amiga may not see the marks as what they should be: small dots in
the center of the line.)

If ARexxGuide is launched with the included ARexxGuide.rexx script, then
the message port used for the requesters will be opened and closed
automatically. If it isn’t already available, the port will be established
when the first requester link is chosen. It can be closed at any time by
choosing the ‘Close Requester Port’ link on the main contents page of the
RQ version or by issuing this instruction:

address ’ARX_REQPORT’ ’QUIT’



ARx_Intro.ag 12 / 13

Formatting codes for slanted, bold, and highlighted text that are
interpreted only by Multiview are used in the standard version of
ARexxGuide, but not in the RQ version.

Next: Navigation | Prev: Introduction | Contents: Introduction

1.14 ARexxGuide | Foreword | About this guide (2 of 2) | NAVIGATION

Navigating ARexxGuide
~~~~~~~~~~~~~~~~~~~~~
The three most important keys in ARexxGuide are the -Browse Forward- key,
the -Contents- key, and the mouse button or return key that chooses link
points.

-- Press -Help- for general information about AmigaGuide keys --

The browse keys let you move from one node to the next. The contents key
will bring you back to the closest in a nested series of contents pages.
Some of those pages feature an overall explanation of the subject; some of
the contents pages consist of little more than links to other nodes in the
document.

Pressing the -Contents- key repeatedly will bring you back to the main
contents page of the document ‘ARexxGuide.guide’.

Nodes are attached to one another in a way that makes some of them
invisible when using only the -Browse- keys.

1. Node name 1
| a. subnode
| b. subnode
| | b1. sub-subnode
| +-b2. sub-subnode
+-c. subnode
2. Node name 2
| a. subnode
| b. subnode
| c. subnode
| d. subnode
+-e. subnode
3. Node name 3

Nodes listed in the same column are directly accessible with the -Browse-
keys. Pressing -Browse Forward- from node 1 will move you to from there
to node 3. This allows for a quick overview of the subject before the
subnodes are investigated for in-depth information.

One must press a link button to get from node 1 to node 1a, but once in
node 1a the -Browse Forward- key will move you to node 1b and through the
other subnodes of that level.

The lines extending from node 1c back up to node 1 indicate that the
contents page for all of the subnodes of 1 is node 1 itself. Pressing
-Browse Forward- from node 1c. will also move you back to node 1.

ARx_Intro.ag 13 / 13

A line at the bottom of each node lists names of the nodes that will be
shown when pressing the -Browse- keys or the -Contents- key. The
titlebar identifies the section in which the current node is located and
the number of nodes in the current level.

A NOTE ABOUT NODE-SURFING: Using a hypertext document is more like
reading a newspaper than it is like reading a

book. Just as it’s possible to get lost in a newspaper when one has
flipped back the section covers to follow a story’s "jump" to the inside
pages, so too, it’s easy to get lost when following the links in a
hypertext document.

The best thing to do with a newspaper is to fold back the sections to
their front pages, rearranging the paper in its original form. So too,
it’s often best to move back to the beginning when jumping through links
in a hypertext document. The -Contents- key allows you to rearrange each
section so that its front page is on the front.

Some versions of AmigaGuide include a ‘Bookmark’ feature in the
‘Navigation’ menu. Setting the bookmark will let you quickly jump back to
your starting point after investigating a few of the links.

When using the ‘AmigaGuide’ utility (but not with Multiview), a new window
can be opened for any link by shift-selecting the link point. (Press Shift
and Enter to select the current hyperlink, or Shift and the left mouse
button to select any hyperlink.

Any open window (including the main one) can be closed immediately by
pressing the Esc key.

Next: INTRODUCTION | Prev: Requester version | Contents: Introduction

	ARx_Intro.ag
	ARexxGuide | Introduction
	ARexxGuide | Preface (1 of 5) | ACKNOWLEDGEMENTS
	ARexxGuide | Preface (1 of 5) | REFERENCES (1 of 1)
	ARexxGuide | Preface (1 of 5) | Author
	ARexxGuide | Preface (1 of 5) | Distribution restrictions
	ARexxGuide | Preface (1 of 5) | Compatibility with the REXX standard
	ARexxGuide | Introduction (1 of 5) | THE FIRST PROGRAM
	ARexxGuide | Introduction (2 of 5) | WHY AREXX?
	 ARexxGuide | Introduction (3 of 5) | GETTING STARTED
	 ARexxGuide | Introduction (4 of 5) | WHERE TO WRITE PROGRAMS
	 ARexxGuide | Introduction (5 of 5) | RUNNING YOUR PROGRAMS
	 ARexxGuide | Introduction (6 of 5) | WHAT TO WRITE
	ARexxGuide | Foreword | About this guide (1 of 2) | REQUESTER VERSION
	 ARexxGuide | Foreword | About this guide (2 of 2) | NAVIGATION

